GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (AUTONOMOUS) MADHURAWADA, VISAKHAPATNAM

DEPARTMENT OF INFORMATION TECHNOLOGY

SCHEME OF COURSE WORK

Course Details:

COURSE TITLE	Formal Languages & Automata Theory			
COURSE CODE	15CT1119 L T P C 3 0 0 3			
PROGRAM	B.TECH			
SPECIALIZATION	Information Technology			
SEMESTER	V			
PRE REQUISITES	None			
COURSES TO WHICH IT IS A PRE REQUISITE	Compiler Design			

Course Outcomes (COs):

1	Design Finite Automata
2	Convert Regular Expressions into Finite Automata& vice versa
3	Interpret Languages in the form of Grammar
4	Design Push down Automata
5	Design Turing Machines

Course Outcome versus Program Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3											2	2	
CO2	3	3												2	
CO3	3	3													
CO4	3	3													
CO5	3	3											3	2	

3 - Strongly correlated, 2 - Moderately correlated, Blank - No correlation

Assessment Methods	Assignment / Quiz / Mid-Test

Week	Topic/ Contents	Course Outcomes	Sample questions	Teaching learning strategy	Assessment method & schedule	
1	Basic Concepts, formal finite state machines, acceptance of strings by languages, DFA, NFA	CO1	Define symbols, strings, languages, DFA, NFA, Design of finite state machines, acceptance of strings by FSM		Assignment-1, Test- 1 Quiz-1	
2	Transition diagrams, language recognizers, Equivalence between DFA & NFA, NFA to DFA Conversion, NFA- € Transitions, Significance	CO1	Conversion from NFA to DFA,		Assignment-1, Test- 1 Quiz-1	
3	Conversion of NFA with ε to NFA without ε transitions, FA minimization, mealy and moore machines	CO1	Define mealy and moore machines, conversion of NFA with C to NFA without C transition		Assignment-1, Test- 1 Quiz-1	
4	Regular sets, regular expressions, operations and applications, Identity rules, conversion of a given RE into FA, Conversion of FA to RE using Arden's theorem	CO2	Define regular languages, regular sets, Conversion of given RE to FA and vice versa State Arden's theorem and prove it		Assignment-1, Test- 1 Quiz-1	
5	Pumping lemma for regular sets, Closure properties for regular sets, Grammar definition, language of a grammar, types of grammars, Chomsky classification of languages	CO2, CO3	Prove some of the languages are not regular using pumping lemma State the closure properties of regular sets		Assignment-1, Test- 1 Quiz-1	
6	Regular grammars, right linear and left linear grammars, Conversion from right linear to left linear grammars, Equivalence between regular grammar and FA, interconversion, Context sensitive grammars, linear	CO3	Define regular grammars, right and left linear grammars Conversion from left to right linear grammars, Define context sensitive grammars, linear bound automata		Assignment-1, Test- 1 Quiz-1	

Teaching- Learning & Evaluation

	bounded automata			
7	Derivation trees, left most and right most derivation of strings, sentential forms, Ambiguity of grammars, left recursion and factoring	CO3	What are ambiguous grammars? Define derivation trees and writing derivation trees for a given grammars,	Assignment- 1,2, Quiz-1, Test-1, 2
8	Test- 1			
9	Minimization of CFG, Normal forms- CNF, GNF, Pumping lemma for CFL, Closure and decision properties of CFL, Applications of CFL	CO3	Define null productions and unit productions Define useless productions State CNF & GNF State pumping lemma for CFL	Assignment-2, Test- 2, Quiz-2
10	PDA, Acceptance of CFL, Acceptance by final state and acceptance by empty state, Equivalence of CFG & PDA,	CO4	Define PDA. State the ID of a PDA for empty state and final state	Assignment-2, Test- 2, Quiz-2
11	Inter conversionandIntroductiontodeterministic PDA	CO4	Conversion of PDA to CFG and Vice versa	Assignment-2, Test- 2, Quiz-2
12	Turing machine, representation, Design of Turing machines,	CO5	Define Turing machine Design a Turing machine for $0^{n}1^{n}2^{n}$	Assignment-2, Test- 2, Quiz-2
13	Types of Turing machines	CO5	Explain different types of Turing machines	Assignment-2, Test- 2, Quiz-2
14	Computable functions, Unrestricted grammar, recursive and RE Languages, Church's hypothesis	CO5	Design of Turing machine for a given computable function What are recursively enumerable languages State church's hypothesis	Assignment-2, Test- 2, Quiz-2
15	Test- 2			